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A series of experiments has been performed on a horizontally oriented, rectangular Hele-Shaw cell.
Air was injected in the middle of one of the short sides of the cell into the silicon oil contained between
the glass plates of the cell. The resulting unstable, immiscible interface resulted in a series of fingering
patterns that were photographed and digitized. A variety of analytical techniques was applied to the im-
ages in order to quantify the observed phenomena. These included (i) calculating pattern densities, as a
function of distance from the injection port, which help to identify growth regions, (ii) determining
power-law relations between several of the patterns’ growth parameters (e.g., interface length, gyration
radius, and flow area), and (iii) obtaining time series of two fractal measures, thus illustrating temporal
variability in the geometrical properties of the images. In addition, an extensive study of the distribu-
tions of length scales and their temporal evolution was done using histograms with two bin regimes and
scatter plots of percent population within given bins. The temporal evolution of dominant scales and a
modal distribution of length scales conforming to the predictions of linear stability has been witnessed.

PACS number(s): 68.70. +w

INTRODUCTION

In this series of experiments, a rectangular Hele-Shaw
cell was used to study the temporal evolution of the two-
dimensional (2D), injection-forced, immiscible interface
between air (the forcing fluid) and a silicon oil (Dow
Corning 200). The oil was dyed for visualization and was
found to have a surface tension (7;) of 21.0%0.4
dyn/cm, a molecular viscosity (u) of a 1.066 g/cm sec,
and a density (p) of 0.96 g/cm®. The viscosity and densi-
ty of the air were negligible when compared with that of
the oil. .

Fluid flow within a Hele-Shaw cell is assumed to local-
ly obey a plane Poiseuille velocity-pressure gradient rela-
tionship:
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(where b is a gap width and p is fluid viscosity). Gravita-
tional terms have been disregarded, since the experiments
were done using a horizontal cell. Linear stability
analysis [1,2] derives the following dispersion relation for
a plane interface:
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(where o is the growth rate, ¥ is the magnitude of the in-
terfacial velocity, T is the surface tension, and k is the
wave number). Temporarily disregarding the surface ten-
sion term allows one to see that for u, <pu, (subscript 2
refers to the intruding fluid), o is negative and instabili-
ties will be damped out. The opposite case leads to grow-
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ing instabilities for which the surface tension creates a
threshold or cutoff wave number. The wavelength at
which this occurs, i.e., at which o becomes positive, is
the minimum scale needed for the instability to grow and
is termed the critical wavelength [I,, Eq. (3)]:
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The length scale (I*) at which the maximum growth rate
is attained has been worked out [1] to be I*=V'3I,. This
length scale was used to calculate characteristic parame-
ters, described below in Table I, which serve to create di-
mensionless results.

These solutions were obtained assuming ad hoc that
the pressure drop across the interface was of the form

2,1

AP=T, | +—
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where R is the radius of the meniscus projected onto the
plates. This assumption has been the subject of much dis-
cussion (see [3] for a comprehensive discourse). It ig-
nores corrections in the interfacial pressure condition due
to changes in the gap width caused by the residual film of
more viscous fluid left on the plates. These wetting
effects have been accounted for, to first order, and the 3D
free-boundary problem at the fluid interface has been
solved, through the use of a double expansion around N,
(the capillary number) and the ratio of the interface’s
transverse and lateral dimensions [4]. This work resulted
in an expression for the pressure drop [Eq. (5)], where
N,=Vu,/T, and J =3.8:
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2 - 27 61 by 120 cm. Instead of generating a gravitationally
AP=T, | |- +— |+=N2 | (5)  driven instability by rotation about its central axis [8], the
b 4R b . . ;
cell was kept horizontal and forcing was accomplished

The first-order boundary condition and results of numeri-
cal experiments for the dynamically similar flow in a tube
[5] have been utilized to develop a relation for the
modified wave number [6], defined below:

A K maxbN 2172, (6)
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Curves for the various theoretical predictions and the re-
sults of laboratory experiments have been concisely sum-
marized (Fig. 2 of [7]). These curves reveal that for low
N, the formulations developed using Eq. (5) show good
correspondence, but as the flow rate is increased, the ex-
perimental data for A, is significantly lower than the
theoretical predictions. In fact, in the limit of large N,
the most unstable wavelength becomes a constant multi-
ple of the gap width.

When performing experiments with a Hele-Shaw cell,
the extruded fluid can be seen to leave a thin film on the
plates as it is displaced. This residual film, alluded to in
the preceding paragraph, narrows the gap through which
the intruding fluid can flow. This causes the pressure
change across the interface to rise, resulting in an in-
creased interfacial velocity through mass conservation.
Equation (3) indicates that the threshold length scale de-
creases as the interfacial velocity increases, thus leading
to a more convoluted growth pattern. Indeed, it was pos-
sible to distinguish regions of higher interfacial velocity
by the presence of shorter-wavelength instabilities as well
as a residual film of varying thickness, which may be seen
in the photographs (Fig. 2) but which proved impossible
to quantify.

The air space at the top of the cell, necessary for unre-
stricted fluid evacuation, led to the presence of an upper
air-oil interface. This second interface (Fig. 2) was also
digitized in an attempt to create a fluid volume budget
which might be used to estimate the average thickness of
the residual film. However, this budget could not be ac-
curately determined, since not all of the fluid was driven
towards the top of the cell. This was emphasized by the
occurrence of a “pinching-off” phenomena which hap-
pened more frequently as the flow rate was increased
[Fig. 2(c)]. This was due to the displaced oil being
pushed to the sides of the cell and returning towards the
injection port along the cell boundaries. As this return
flow propagated along the sidewalls, it compacted the ex-
isting flow pattern. Normally, this was insignificant, i.e.,
the existing flow pattern was not noticeably affected. The
return flow was of importance only when a thin region of
the flow pattern near the injection port was pinched shut
by the downward propagating oil. This caused the flow
pattern to be separated into an actively forced region and
one or more freely floating globule(s). This pinching-off
phenomena limited the useful range of flow rates for the
experiments, resulting in a limited range of length scales.

EXPERIMENTAL PROCEDURE

The cell consisted of two glass plates of thickness 1.27
cm separated by a gap of 0.21 cm and a visible surface of

through air injection. In the upper plate five holes were
drilled (Fig. 1), into which one thermistor and four valves
were fitted. The cell was not completely filled with the
viscous oil in order to allow for the presence of the air
pocket, which could exit from the top of the cell with
minimal resistance when air was injected at the bottom.

The experiments consisted of six runs each at three
different flow rates and five runs at the highest flow rate.
For each run, between 10 and 13 pictures were taken us-
ing a 35-mm camera with an electric winder. An elec-
tronic timer was attached to the cell and included in the
photographs. Each series of photographed interfaces
(Fig. 2) was then projected, using a dark-room enlarger,
onto a digitizing pad (GTCO Demi-Pad 5) where they
were digitized by hand. The generated data were stored
on an IBM-PC. This procedure resulted in a resolution
of 8.2 points/cm for the stored images. Once on the
computer, various analytic techniques were developed
and applied to the images in order to quantitatively de-
scribe the interface evolution.

RESULTS AND OBSERVATIONS

Pattern evolution

After starting out as a semicircle near the injection
port [Fig. 2(a)], the flow pattern quickly evolves into two
major fingers growing towards the top of the cell [Figs.
2(b) and 3(aj]. These two major fingers frequently bifur-
cate along the tips and sides, at the latter of which the
growth is quickly damped by the presence of the side
walls. When the fingers split at the tip, a growth com-
petition develops, and it can be seen that the eventual
winner has a more convoluted interface, indicating a
greater mass flux into that finger. As the faster-growing
finger outpaces its competitor, it begins to spread lateral-
ly, thus shielding the slower finger from any further ex-
pansion towards the top of the cell. These three mecha-
nisms, interface bifurcation, shielding by competing
fingers, and flow restriction by cell boundaries, combine
in the formation of the observed fingering patterns.

— 1l
o] ol 4

Thermlstor/

Injection Port —=0O 61 cm

Evacuation Ports

~

U

120 cm

FIG. 1. Schematic of rectangular cell used for experiments.
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(a)

FIG. 2. (a) Frame 2 of a run from the highest flow rate. This picture illustrates the semicircular nature of the growth away from
the injection port, before the presence of the side walls is felt. (b) Frame 5 of the same run. This picture shows the expansion to be
essentially parallel to the side walls and the occurrence of a growth competition between two main fingers. (c) Frame 8 of the same
run. This picture illustrates the pinching-off effect (the upper left portion of the pattern has become disconnected), which occurred
for several of the runs at higher flow rates.
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The bifurcation spacing has been quantized by taking
slices through the digitized flow pattern, parallel to the
bottom wall, at equally spaced distances above the injec-
tion point. The ratio of the length of the slice which in-
tersects the injected air normalized by the cell width has
been defined as the pattern density (p) and plotted as a
function of distance from the injection point. These
curves [Figs. 3(a) and 7(a)] show that p(y) generally oscil-
lates between values of 15% and 40% of the cell width.
Comparison of digitized images with their corresponding
pattern density curves [Figs. 3(a) and 7(a)] reveal that the
local minima of p(y) correspond to both pattern bifurca-
tions and, to a lesser degree, the ceasing of a finger’s
growth due to shielding. The maxima occur when there
are several fingers growing simultaneously at a given lev-
el. A comparison of pattern density curves of the last
frame of different runs shows that there is little
correspondence a few cm from the injection port (not
shown), indicating that the experimental apparatus is not
“seeding” the bifurcations. Superimposing the p(y)
curves for all frames of a run [Fig. 3(b)] reveals that the
evolution of the flow near the injection port eventually
ceases and that the pattern retains its basic shape after
growth at a level has stopped.

Characteristic parameters

Geometrical characteristics, consisting of the flow area
(A), interface length (L;), gyration radius [R,, defined as
(fpr(y)y dy)'’?] and flow height (H) were determined
for each digitized pattern. The interfacial velocity (V)
was estimated by linearly regressing R, against time,
with the minimum correlation coefficient for all runs be-
ing 0.996. This is a rough estimation, since it actually
measures the motion of the mass centroid, whereas the

(c)

FIG. 2. (Continued).

13

velocity is nonconstant along the interface. This “in-
tegrated” interfacial velocity is used to determine the pa-
rameters I*, u*, t*, and B* defined at the bottom of
Table I, similar to those used previously [8] and based
upon the linear theory [2]. As a means of comparison
with other experiments in the literature, N, ranges in
value from 0.129 to 0.222 for these experiments. The pa-
rameter I* was limited by the pinching-off phenomena to
a range of 1.84 cm down to 1.40 cm for the highest flow
setting.

Power-law relations (with exponents a, c, d, and e) cor-
responding to the relationship between the four parame-
ters [L;, R,, time (¢), and H/] and the flow area ( 4) have
been calculated and are shown in Table I, together with
their definitions. An example of each relation, corre-
sponding to the data from the entire run for the flow pat-
tern in Fig. 3(a), is shown in Fig. 4. The average value for
d [1.00 with a standard deviation (hereafter,
0sp)=0.103] reveals the growth rate of the area to be
linear with time, as is to be expected for a constant mass
flux. This suggests that the product of H, and the aver-
age width of the pattern w,, [defined as 1/H, fglfp(y)dy]
should vary linearly with the area. In Fig. 4, H, grows
like 4°%7% (Table I), which indicates that w,, should grow
like 4%2* in order for their product to be linear with the
area. This is indeed the case as w,, is found to vary like
A%2 for this run. Another characteristic of note is the
curvature which appears in the scatter plot of H, versus
the area (Fig. 4), indicating that the flow’s tip velocity in-
creases with time. This increased velocity is also indicat-
ed by the density plots (Fig. 3,7) which show maximum
widths to occur near the injection port and a trend to-
ward narrower widths as the flow progresses away from
the injection point. Thus, as the patterns spread less la-
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terally, they must compensate by growing faster parallel
to the walls, hence the increased tip velocity.

The average values for the power relations (a,, =1.30,
c,,—1.27, and e,,=1.27, with ogp=0.044, 0.049, and
0.051, respectively) are not significantly different. The
fact that c,, and e,, (power relations based on R, and
H, respectively) are identical is not surprising, consider-
ing that both parameters correspond to one-dimensional

growth. Since the interface length should be free to ex-
pand in two dimensions, it is difficult to explain why a,,
is not statistically different from c,, and e,,. Indeed, for
an object with a convoluted 2D interface, the value of a
should be less than ¢ and e and should decrease as the in-
terface becomes more convoluted. This is supported by
some preliminary experiments performed in a circular
cell for which the value of a was 0.5, while ¢ and e were

S 8-
(a)
8t st
8r 8r
€ €
< L
= s
° gt o gt
T T
I o]
(@] (@]
2r er
&t 5 FIG. 3. (a) Digitized flow pat-
tern and corresponding density
curve. Minima in p(y) corre-
spond to multiple pattern bifur-
° . . N ° . . cations, while maxima corre-
-20 ° 2 © 02 o4 spond to the presence of multi-
Cell Width (cm) o(y)
ple developed fingers. (b) Super-
imposed density curves revealing
T T T T T regions of the pattern which
( b) have stopped growing. The pat-
tern shown in (a) is the last im-
age of the series shown here.
o | -
[{e]
G
L
&2 .
[
I
°
o
o L -
~N
o 1 1 n
0 0.6 0.8 1

p(y)



JERRY WIGGERT AND TONY MAXWORTHY

1936

938 ¢'01 > 2938 68> 4! €200 0£€0 98T'Y SIF'I 9’1 €0l 97’1 8T'1 88T ¥ 65
VN 098 L'9> €l w00 9LE0 0£6't LLY'] 8T'1 90°1 (YA 97’1 [4X)3 (14
9§ L8> 98 L'L> 01 w00 yLEO 1¥6°¢ SLY'1 0g'1 80'1 €1 8T'1 we'e 6¢
VN VN 8 S€T0°0 Y0 ILT'Y yEV'l 9T'1 SOl 8T'1 9’1 ELTY 6C
VN VN 1 0£20°0 12¢€°0 1 4 wor'l (44! LO'T (YA 6’1 99¢'y 61
98 L'T1> 938 01 > 11 £570°0 620 009°¢ sl 61°1 1071 811 LT1 109°¢ 89
VN VN 11 ¥920°0 68%°0 667°¢ [ALA! ¥e'l 6L°0 140! 8Tl 00¢g°€ 8¢
VN VN 4! LYT0°0 10v°0 99L’¢ 60S°1 STl 90°1 STl 9¢'1 LoL'e 8y
VN 998 11> €l 0§20°0 eIyo 169°¢ 14! 6T'1 SO'1 9T'1 LT 769t 3¢
VN s L'T1> 4! 16200 12v'0 LY9'E 143! 9’1 LO'T 6Tl se'l 819°¢ 8T
VN 38 6L'6> 4! 19200 wy'o 9LE'E $65°1 0Tl IL°0 YAl (44! LLEE 81
VN VN €l €L70°0 8€S°0 $60°¢ §99°1 €el (40D 1e°1 el S60°¢ L9
VN VN 4! TLT00 €S0 8IT°¢E 869°1 (43! 90°1 €1 LT1 61T°¢ LS
VN VN 4! $LT0°0 9¥S°0 £90°¢ €L9'1 0Tl 101 171 (1] $90°¢ Le
VN VN ¢l 89700 80S°0 SITe £€9°1 XA 0’1 XA 9Tl 91T°¢ LT
VN %98 ['TI> 1 LLTO0 196°0 010°¢ 889°1 9’1 68°0 9T'1 LTl 110°¢ Ll
VN VN 4! 20£0°0 97L’0 £EsT o8l LET SO'1 6¢'1 (4% $€6°C 9¢
VN VN 11 86700 669°0 009°C 918’1 14! ¥6°0 LT1 LT1 109°C 9¢
yoeneay po-yourd safewrf ;4 o o oI F) r b D (09s/ud) 4 'ou MO

M/ T= 3l 1 I= 33 (C /(=T g = 0, [ ="1) g/ 5L]q2 =, $19)
-surered ssa[uoISUSWI(] [[32 Y} JO YIPIM Y3 SI 4 ‘UOISUD) d0BJINS Y} ST S [ “11e Jo £31S09s1A 93 St 71 ‘110 JO A31S00SIA 3y} SI I <de8 9yeid oY1 st g Y=y Y=V nwzn V STI=V se
pauysp siusuodxa ‘1p/ Y = A “WyS1eY moy 3y) st J g ‘own st 7 ‘snipex uoryesA3 ay s 8y ‘q18uo] sovyI03UL Y} SI VT ‘oI A SI p SUOHIUYIP [0qQWAS “Blep MeUS-3[9H T HTAVL



47 MODAL BEHAVIOR OBSERVED IN THE EVOLUTION OF ... 1937
10° . T 10° T .
o
4
_ . T K
g 10 | L1 o o E
- y i c” .
1 o' L L 10° . L .
10' 10° 10° 10 10' 10° 10° 10 FIG. 4. Examples of the graphs of various
Area (cmz) Area (cmz) flow characteristics plotted vs the flow area
and used to determine the power-law parame-
10° T T 10° . . ters for each series of images. These data are
' from the run shown in Fig. 3.
"; 1 P ..
10' | . .
8 o E :
. AL S :
g 10° ) E -
i: . I
10" A L 10° s —
10' 10° 102’ 10 10' 10° 10° 10
Area (cm?) Area (cm?®)

1.5 and 0.8, respectively. This suggests that the rectangu-
lar cell geometry is restricting the growth of the interface
such that its increase due to the instability mechanism is
insignificant when compared to its increase in the along
cell direction.

Pattern parametrization using fractal dimensions

Fractal dimensions have been recently popularized as a
means of quantifying the geometry of non-Euclidean ob-
jects [10]. Richardson [11] employed the stick method
while puzzling over the fact that the total length of a
given geographical boundary was sometimes reported in
different sources with a variation of up to 20%. He
found that geographical boundaries increased in length as
the measuring gage was decreased in size. Another way
of estimating a fractal dimension is the box-counting
method. This technique consists of superimposing a rec-
tangle over the object of interest, subdividing the rectan-
gle, and recording the number of boxes covering a por-
tion of the flow for each subdivision. Ideally, the shape
being analyzed will have spatial variability over a range
of length scales so that the gage length may be varied
over several orders of magnitude in order to have a well-
defined dimension. A dimension (D) is determined by
setting the nominal Euclidean dimension (1 or 2) equal to
the value of the constant slope which appears in a log-log
plot of the number of steps or boxes versus gauge length
when analyzing a fractal object. In this analysis, two
fractal dimensions, defined as the interfacial dimension
(D;, using the stick method) and the area dimension (D,,
using the box-counting method), have been calculated.
The curves used for finding the two dimensions for the
flow pattern shown in Fig. 3(a) are shown in Figs. 5(a)
and 5(b). Both dimensions have been calculated for each
image of the experiment, and Figs. 6(a) and 6(b) consist of

scatter plots of all the dimension estimates (D; and D,,,
respectively) as a function of time, allowing for investiga-
tions of temporal variability.

The range of gage lengths used for the two methods
was limited to one order of magnitude by fluid and
geometrical properties. The minimum gage length (3
mm) was chosen to be between the digitizing resolution
(=~1.2 mm) and the smallest value for the critical (i.e.,
growth threshold) wavelength (I */v3>8.1 mm, Table
I) for all the runs analyzed. The maximum gage length
was limited to 3.6 cm by the onset of a “sporadic” result
in the interfacial dimension [Fig. 5(a)] which occurred
when analyzing the interfaces from the early images of a
run. This behavior is due to these short interfaces having
total lengths not much greater than the maximum gage
length and was also seen in the area dimension curves to
a lesser degree [Fig. 5(b)]. The maximum limit could
have been increased as the interface length increased, but
was kept constant in order to have a consistent technique
that allowed for comparison between frames.

In order to obtain a value for D; from the log-log plots,
a least-squares fit was applied to the data points. This
was done to reduce biasing, since it was difficult to objec-
tively determine a constant slope region on some curves.
The scatter plot of all D; time series from the experiment
and the superimposed third-order-polynomial curve fit
[Fig. 6(a)] reveal that the interface dimension starts near
1.20 before reaching an asymptotic value of 1.07. The
highest values always correspond to the initial image for
which the length scales are severely limited. It is possible
that the elevated values of D; for the initial images of a
run are a by-product of the extremely limited range of
length scales due to the interface length’s limited magni-
tude. This restriction makes it difficult to determine an
interfacial dimension for the initial images of a run, and
it may be that the wide variation in D; over the course of
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a run should be viewed with skepticism. D, is obtained
using the same curve-fitting method used to determine
D;. The scatter plot of all the D, time series from the ex-
periment [Fig. 6(b)] shows that the values of D, range
from 1.77 to 1.82 with a slight increase as the pattern de-
velops, followed by a slight decrease near the end of the
run.

When comparing the scatter plots for the two different
dimensions [Figs. 6(a) and 6(b)], two characteristics are
immediately obvious. The data on the D; curve reveals
greater scatter (o0gp=0.035) and a stronger time depen-
dence than the D, data (05, =0.011). This is especially
pronounced for the earlier times of a run where the initial
values for D; range from 1.11 to 1.22, while D, ranges
from 1.77 to 1.81. The temporal variability of the two
time series is emphasized by the third-order-polynomial
curve fits which have been superimposed on the scatter
plots. The curve fits are useful in obtaining an averaged
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behavior for the data from the entire experiment and pro-
vide a means of comparing the overall trends of the inter-
facial and area dimensions. The general characteristics of
the curve fits for the two-dimensional measures have al-
ready been briefly discussed, and some doubts have been
raised concerning the validity of the indication in the D;
plot that the dimension of the patterns decreases with
time. However, the curve fit for the D, data shows some
indication of corroborating this possibility. It should be
remembered that the area dimension will tend toward 2.0
as the object under investigation becomes less fractal.
Keeping this in mind, the curve fit for D, is at its lowest
value at the beginning of the time series when D; is at its
peak. As D; decreases towards its asymptotic value, D,
increases. Although the variation in D, is slight, it does
vary in such a manner as to support the observed varia-
tion in D;.
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Spatial scale distribution and temporal variability

The local radius of curvature of the flow pattern has
been determined by stepping along the interface and cal-
culating the radius of the circle circumscribing a local
triad of interfacial coordinates. These radii have also
been inverted to obtain the curvature of the interface. A
sign convention has been introduced in which positive
values correspond to a curvature directed away from the
injection point (i.e., the center of the fitted circle lies out-
side the injected air) and vice versa. The spatial distribu-
tion and temporal variability of the length scales generat-
ed by the instability mechanism are illustrated using
(1) plots of curvature as a function of interfacial position
(starting at the injection port and traversing the interface
in a clockwise direction before returning to the injection

port), (2) histograms of radius, and (3) time series of pop-
ulation percentage within bins which are defined based on
the length scales obtained from the stability analysis.

The curvature plots [Figs. 7(b) and 7(c)] reveal the
spacing of the growth regions along the interface and the
onset of pinch off events. The position of the small-scale
concentrations (i.e., the growth regions) is determined by
the state of the fingering competition along the interface.
If there is one dominant finger in the expanding region of
the flow [Fig. 7(a)], then the concentration of small scales
will straddle the halfway point of interfacial position
[Fig. 7(b)], corresponding to the top of the pattern. If
there are two growing fingers of unequal size (Fig. 4),
then two regions of small scales will be concentrated
around a region of larger scales [Fig. 7(c)] and will not
necessarily be symmetric about the halfway point. In ad-
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dition, in the growth regions containing the smallest
scales, the negative scales outnumber the positive scales.
The limit definitions for the nine bins in the time series
of percent population are defined in Table II, along with
the average value for the population, the standard
deviation,and a brief description of the temporal behav-
ior. The different bins can be divided into three

120
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categories. A representative for each category is shown
in Figs. 8(a)-8(c). The percent population in bins 1 and 9
tends to increase with time [Fig. 8(a)], although the trend
is difficult to discern. The greatest rate of increase comes
for t/t*<5.0. Bins 2, 6, 7, and 8 show their percent
populations to be relatively constant [Fig. 8(b)]. Bin 2
shows a slight decreasing trend but the scatter is too high

FIG. 7. (a) Flow pattern and
density curve corresponding to
curvature plot in (b). The
second density curve is the pre-
vious frame of the run. The
growth region is indicated by the
numerous bifurcations and the
divergence in the two density
curves above 65 cm. (b) Dimen-
sionless curvature as a function
of distance along the interface.
Note the high concentration of
negative length scales around

L 350 cm corresponding to the
o(y) new growth region illustrated in
(a). (c) Dimensionless curvature
as a function of distance along
the interface. This  plot

coresponds to the image shown
in Fig. 3(a). Note the multiple
concentrations of small length
scales centered at 185, 220, and
340 cm along the interface. This
1 is due to there being two com-
peting fingers with separate
growth regions instead of one
dominant finger with a single
growth region.
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FIG. 7. (Continued).
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to make a definitive statement. Bins 3, 4, and 5 have per-
centage populations that decrease with time. All four of
these bins show the greatest rates of decrease for
t/t* <5.0 [Fig. 8(c)]. The overall picture presented by
these time series plots is one of a trend toward spatial
scales of increasing magnitude.

Histograms of radii have been formed to study the dis-
tribution of scales with respect to the characteristic
lengths predicted by the linear theory. The values of the
abscissa have been normalized by I., so values of +1.0
correspond to =£I,. An average large bin histogram has
been created (Fig. 9) with error bars indicating the varia-
bility found in each bin. These large bins are centered
around integer multiples of I, and are based on the limits
and labeled according to the numerical designations
found in Table II. Histograms for each image of a run
have also been created (Fig. 10). These superimpose the
large bins just described upon histograms for which the
bin size is taken as 0.11,. This superposition allows for
investigations into the position of the dominant modes

500 600

within the large bins.

The average histogram (Fig. 9), where each bin is la-
beled according to the bin numbers defined in Table II,
reveals the length scale distribution over the entire exper-
iment. In general, it can be seen that the populations of
the negative scales are higher than that of the positive
scales for corresponding bins and that the smaller scales
have higher populations than the larger scales (within the
limits of the histogram) except for bin 5. This is to be ex-
pected since the range of attainable length scales has a
lower limit of +0.251,. Bin 4 (delineated by —1.51, and
—0.51,) has the highest average probability density func-
tion (PDF) and the greatest variability, the latter of
which is a result of the ephemeral presence of length
scales near —0.5I.. Bin 3, which contains the —2I,
mode, has the second highest average PDF. Bins 6 and 7,
the positive counterparts to bins 4 and 3, have the next
two highest average PDF’s and preserve the trend shown
in the negative bins with respect to dominance of shorter
scales over longer scales. Indeed, the relative dominance

TABLE II. Large bin limits and characteristics.

Bin no. Limits Av. % Pop. Osp Description
1 < —3.51, 17.9 1.9 increasing, scattered
2 —3.5I.——2.51, 7.9 1.9 constant, slight decrease
3 —2.5I.-—1.51, 12.4 1.5 decreasing, scattered
4 —1.5I,-—0.51I, 14.9 3.0 decreasing, scattered
5 —0.51,-0.51, 5.3 2.6 decreasing, tight
6 0.51.-1.51I, 10.9 1.4 constant
7 1.51.-2.51, 9.3 1.6 constant
8 2.51.-3.51, 6.3 1.4 constant
9 >3.51, 19.6 1.6 increasing, scattered
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between the two pairs of corresponding postive and nega-
tive bins (i.e., bin 4 versus bin 6 and bin 3 versus bin 7) is
statistically significant. This is not the case for the final
pairing (bins 2 and 8) which have average levels that
preserve the domination of negative scales over positive
scales. However, the difference in level of these two bins
is not statistically significant as illustrated by the error
bars on the figure.

The small bin histogram for the lowest flow rate [Fig.
10(a)] reveals the main peaks in scale distribution to be
slightly below £1.0 with secondary peaks occurring

JERRY WIGGERT AND TONY MAXWORTHY
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~=+1.8. In addition, the secondary peak at +1.8 is
rivaled by a peak at +0.5. Figures 10(b) and 10(c) are
from two different times within the same run of a higher
flow rate than that shown in Fig. 10(a). Taken together,
they corroborate the tendency toward larger length scales
with the progression of time witnessed in Figs. 8(a)-8(c).
Figure 10(b) shows the second largest peak in the large
bins as ranging from —0.5 to 0.5 and the strongest peak
in the small bins to be straddling £0.5. The presence of
these smaller scales is typical of the earliest pattern evo-
lution images throughout the experiment and their disap-

30

20

FIG. 8. (a) Time series of the
percentage of the total “popula-
tion” of radii that fall within the
limits of bin 4. This image is
characteristic of the variation

Percentage of radii within bin 4
10

L

observed in bins 3-5. These all
show high initial populations
relative to the other length
scales. The average percentage
(14.9%) is indicted by the solid
line. The standard deviation
(3.0%) is marked by the two
dashed lines. (b) Time series of
the percentage of the total “pop-
ulation” of radii that fall within
the limits of bin 6. This image is

t/t*

30

characteristic of the variation
observed in bins 2, 6, 7, and 8,
which remain constant with
time. The average percentage

20

T

(10.9%) is indicated by the solid
line. The standard deviation
(1.4%) is marked by the two
dashed lines. (c) Time series of
the percentage of the total “pop-
ulation” of radii that fall within
the limits of bin 9. This image is
characteristic of the variation
observed in bins 1 and 9, both of
which increase with time. The
average percentage (19.6%) is
indicated by the solid line. The
standard deviation (1.6%) is
marked by the two dashed lines.

(b) |

10

Percentage of radii within bin 6
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pearance at later times is emphasized by the decreased
prominence of the large bin between —0.5 and 0.5 and
the disappearance of the dominant small bin peak at +0.5
[Fig. 10(c)]. The other dominant modes, seen in Figs.
10(b) and 10(c) occur at values slightly larger than +1
and 2. These modes are more pronounced in the histo-
gram from the later time [Fig. 10(c)] due to the dissipa-
tion of the small scales and the values of the dominant
modes in Figs. 10(b) and 10(c) contrast those of the
slower flow [Fig. 10(a)], which were somewhat smaller.
Thus a modal behavior appears that consists of scales
partitioned like +1;/2,%+1/, and £2I/, where I, denotes
the observed modes. It has also been observed that I in-
creases with respect to I, as the flow rate is increased.

This may be a manifestation of wetting effects that are
not accounted for in Eq. (3) used to predict I,. These
wetting effects should become more pronounced at higher
flow rates, leading to larger characteristic length scales

[7].

DISCUSSION

This study has focused on characterizing the fingering
patterns formed when air is injected into a silicon oil con-
tained within a rectangular Hele-Shaw cell. A range of
injection rates was used, but due to limitations imposed
by the cell geometry and the occurrence of pinch-off
events at higher flow rates which limited the maximum
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flow rate, the range of length scales was limited to 1.5 or-
ders of magnitude. The achievable range in injection
rates was insufficient to generate an observable flow-rate
dependency (as reported previously in [9]), in power-law
variables, which were generated from regressing various
flow characteristics (L, Hy, and R, Fig. 4) against the
flow area for the time series generated for each run. The
average values, over all the runs of the experiment, for
the three power relations are essentially identical, indicat-
ing that the side walls of the cell were a dominant factor
in determining the development of the flow patterns.
This is most strongly indicated by the fact that the power
relation based on L;, which should be 2D in nature, is in-

distinguishable from the power-law variables for H, and
R,, which are essentially 1D. This effect of the side walls
is also witnessed in the superposition of the p(y) curves
[Fig. 3(b)] and the curvature plots [Figs. 7(b) and 7(c)]
both of which show the regions of growth to be near the
top of the flow pattern, farthest from the injection point,
indicating that the side walls quickly become restrictive,
forcing the majority of the growth to occur parallel to the
boundaries.

The area and interfacial dimensions calculated for
these patterns have ranges of 1.76—1.84 and 1.04-1.22,
respectively. A time-independent interfacial dimension
of 1.39 has been reported in a previous work [12] for a
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series shown in Fig. 7(a). Note
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shifted to values slightly greater
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0.04
T

0.03
T

Small Bin PDF

0.02
T

0.01

|

1 S |

— to the dominant modes reported
(b) ] from Fig. 9(a). In addition, note
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tic of all the initial images of
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case without surface tension. This supports the conten-
tion that fractal or stochastic behavior is diminished in
the presence of a stabilizing mechanism, in this case sur-
face tension. The range in interfacial dimension wit-
nessed in this experiment is due to the limited range of
length scales which exacerbates the inherent difficulty,
when using the stick method, of obtaining the well-
defined straight line necessary for defining a fractal di-
mension (Fig. 5). Despite claims in the literature, easily
defined slopes are rarely realized with this technique [13].
The box-counting method is more appealing as a measure
of fractal dimension, since the constant slope region is
well defined. Nevertheless, though the values of the two
dimensions have no relationship and despite the range of
the interfacial dimension, the temporal variability of the
two dimensions appears to coincide. The temporal varia-
tion emphasized by the fitted polynomial curve (Fig. 6)
reveals the values of D, to be increasing and values of D;
to be decreasing. The strong initial decrease in D; from
values of ~1.17 down to an asymptotic value of ~1.07
by t/t*=10 [Fig. 6(a)] indicates that the patterns are
becoming “less fractal” as the flow evolves, since, as D;
tends toward 1.0, the interface tends toward a straight
line. Similarly, since a value of 2.0 represents the Eu-
clidean area dimension, the greater the deviation of D,
[Fig. 6(a)], the more fractal the object. Thus, since D;
and D, vary inversely, they both indicate the flow pat-
terns to be more fractal at early times before reaching
patterns to be more fractal at early times before reaching
asymptotic values of 1.08 for D; and 1.79 for D, at
t/t*=20.

The results obtained from the histogram analysis indi-
cate (1) a temporal behavior in populations of the largest
and smallest scales, (2) an overall behavior consisting of
more negative than positive scales, and (3) a modal be-
havior in the dominant length scales. The observed vari-
ations of percent population in the nine bins (Table II) re-

veal a tendency toward longer length scales as time
progresses (Fig. 8). This reflects both the overall expan-
sion of the pattern, which results in long smooth inter-
faces on the shielded sides of the pattern, and the
smoothing of the previously generated small scales
through the action of surface tension. The average histo-
gram (Fig. 9) reveals the negative scales to be dominant,
with the dominance progressing from negative bin to cor-
responding positive bin, except for bin 6, which is not
greater than bin 3. In addition, the smaller scales are
more populous than the larger scales. The modal behav-
ior witnessed in the small bin histograms consists of
peaks at I and 121/, with scales at +1_/2 appearing at
the early times of each run [Fig. 10(b)]. It also appears
that as the flow rate increases, the observed value of the
modes increases with respect to the value predicted using
the linear stability derived relation [Eq. (3)]. A flow-
rate-independent difference between the observed modes
(I)) and the predicted modes (I,), would indicate that the
estimated interfacial velocity used to calculate I, was in-
correct but that the linear theory itself, using the ad hoc
boundary condition [Eq. (4)], was adequate. The fact that
the difference between the observed and predicted modes
is not constant with flow rate indicates that wetting
effects are non-negligible, with a tendency toward length
scales larger than the prediction of the linear theory.
This agrees with previous results [6,7], which show de-
creasing maximum wave number (i.e., increasing thresh-
old length scales) with increasing flow rate.
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FIG. 2. (a) Frame 2 of a run from the highest flow rate. This picture illustrates the semicircular nature of the growth away from
the injection port, before the presence of the side walls is felt. (b) Frame 5 of the same run. This picture shows the expansion to be
essentially parallel to the side walls and the occurrence of a growth competition between two main fingers. (c) Frame 8 of the same
run. This picture illustrates the pinching-off effect (the upper left portion of the pattern has become disconnected), which occurred
for several of the runs at higher flow rates.
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FIG. 2. (Continued).



